Inexact Preconditioned Conjugate Gradient Method with Inner-Outer Iteration

نویسندگان

  • Gene H. Golub
  • Qiang Ye
چکیده

An important variation of preconditioned conjugate gradient algorithms is inexact precon-ditioner implemented with inner-outer iterations 5], where the preconditioner is solved by an inner iteration to a prescribed precision. In this paper, we formulate an inexact preconditioned conjugate gradient algorithm for a symmetric positive deenite system and analyze its convergence property. We establish a linear convergence result using a local relation of residual norms. We also analyze the algorithm using a global equation and show that the algorithm may have the superlinear convergence property, when the inner iteration is solved to high accuracy. The analysis is in agreement with observed numerical behaviour of the algorithm. In particular, it suggests a heuristic choice of the stopping threshold for the inner iteration. Numerical examples are given to show the eeectiveness of this choice and to compare the convergence bound.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Class of Nested Iteration Schemes for Generalized Coupled Sylvester Matrix Equation

Global Krylov subspace methods are the most efficient and robust methods to solve generalized coupled Sylvester matrix equation. In this paper, we propose the nested splitting conjugate gradient process for solving this equation. This method has inner and outer iterations, which employs the generalized conjugate gradient method as an inner iteration to approximate each outer iterate, while each...

متن کامل

Inexact Newton Regularization Using Conjugate Gradients as Inner Iteration

In our papers [Inverse Problems, 15, 309-327,1999] and [Numer. Math., 88, 347-365, 2001] we proposed algorithm REGINN being an inexact Newton iteration for the stable solution of nonlinear ill-posed problems. REGINN consists of two components: the outer iteration, which is a Newton iteration stopped by the discrepancy principle, and an inner iteration, which computes the Newton correction by so...

متن کامل

Controlling Inner Iterations in the Jacobi-Davidson Method

The Jacobi–Davidson method is an eigenvalue solver which uses the iterative (and in general inaccurate) solution of inner linear systems to progress, in an outer iteration, towards a particular solution of the eigenproblem. In this paper we prove a relation between the residual norm of the inner linear system and the residual norm of the eigenvalue problem. We show that the latter may be estima...

متن کامل

Rayleigh Quotient Iteration and Simplified Jacobi-davidson with Preconditioned Iterative Solves for Generalised Eigenvalue Problems

The computation of a right eigenvector and corresponding finite eigenvalue of a large sparse generalised eigenproblem Ax = λMx using preconditioned Rayleigh quotient iteration and the simplified JacobiDavidson method is considered. Both methods are inner-outer iterative methods and we consider GMRES and FOM as iterative algorithms for the (inexact) solution of the inner systems that arise. The ...

متن کامل

Towards a general convergence theory for inexact Newton regularizations

We develop a general convergence analysis for a class of inexact Newtontype regularizations for stably solving nonlinear ill-posed problems. Each of the methods under consideration consists of two components: the outer Newton iteration and an inner regularization scheme which, applied to the linearized system, provides the update. In this paper we give a novel and unified convergence analysis w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Scientific Computing

دوره 21  شماره 

صفحات  -

تاریخ انتشار 1999